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Introduction to the Dynamical Theory of X-Ray Ditfraetion 
Dl.l  

BY P. P. EWALD 

19 Fordyce Road, New Milford, Conn. 06776, U.S.A. 

The general features, terminology, and method of the dynamical theroy of X-ray diffraction are dis- 
cussed, stressing the analogy with the general theory of small oscillations of a mechanical system. 

My good friend the organizer of this session prepared 
me to speak to an audience consisting partly of experts 
in the applications of this theory and partly to people 
knowing the theory only by name. I shall dwell, there- 
fore, on the method of the theory rather than on re- 
sults or applications, of which the other papers of this 
session will contain examples. 

Theories of X-ray diffraction 

The geometrical theory, the kinematical theory, the 
dynamical theory and the developing quantum me- 
chanical theory of X-ray diffraction can be regarded 
as successive stages of accounting for the same physical 
phenomena. 

(i) In the most primitive stage, the geometrical theory, 
we ask only for the directions under which diffracted 
rays appear, i.e. those directions in which the wavelets 
scattered at each element of a crystal will reinforce one 
another without any cancellations. This theory alone 
leads to the concepts illustrated in Fig. 1, namely the re- 
ciprocal lattice, the tiepoint T determined by making 

TO = k~ the wave vector of the incident wave, and the 
sphere of  reflection of radius k0 with T as centre. When- 
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Fig. 1. Crystal lattice, reciprocal lattice, tiepoint T, sphere of 
reflection and wave-vectors of the primary and two of the 
secondary rays. 

ever this sphere passes through a lattice point, such 

as h, the vector Th =kn becomes the wave vector of a 
diffracted wave. 

This simplest, geometrical theory leads to the struc- 
ture factor by considering the differences of optical path 
caused by the dispersion of the atoms throughout the 
crystal cell. Thereby it opens the way towards crystal 
structure analysis of a primitive kind, namely by the 
use of absent reflections. 

(ii) In the next stage, the kinematical theory, the 
combined effect of the scattered wavelets in directions 
other than those of maximum cooperation is taken 
account of. This requires a relaxation of the strict con- 
dition of periodicity of the crystal, a condition which 
would prevent the crystal from being bounded by a 
surface or of having a finite size, and which leads to 
the 'all or nothing' condition that a point of the recip- 
rocal lattice lie exactly on the sphere of reflection. The 
scattering power - be it electron density co(x) for X-rays, 
or potential V(x) for electrons - is rendered by a 
Fourier series in the case of the truly periodic crystal; 
but for any deviation from periodicity it is rendered 
by a Fourier integral, and its Fourier transform F(r/) 
is a continuous function in Fourier space. For slight 
departures from periodicity, such as finite size of the 
crystal, or temperature motion, the transform F(r/) will 
still have strong peaks at the positions 11=h but each 
lattice point h will be surrounded by a kind of halo 
of F(r/) instead of only carrying, in a &-function like 
way, a Fourier coefficient F h. The purely mathematical 
and physically unreasonable 'all or nothing' condition 
of intersection of sphere of reflection and lattice point 
is now replaced by the more generous result of the 
superposition of the elementary wavelets, namely that 
the amplitudes of the diffracted waves at great distance 
are shown, for wave vectors of any direction, by the 
intersection of the sphere of reflection with the Fourier 
transform F(r/) of the scattering density co(x). This ex- 
tension of the theory leads to the concept of Lorentz 
factor and thereby to a first primitive use of integral 
intensities for the determination of parameters in crys- 
tal structures. It also accounts for the broadening of 
the diffraction lines of fine powders, and for a host of 
other properties. 

In the kinematical theory all waves are supposed to 
travel through the crystal with the same phase velocity. 
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This is generally taken to be c, the light velocity in 
empty space, and then all wave vectors have the same 
length ko=v/c=l/2o where 20 is the wave-length in 
vacuo. In that case the sphere of reflection, which 
always has radius ko, passes through the origin O of 
Fourier space. 

The kinematical theory forms the base for all crystal 
analysis and for the bulk of all work from 1912 on to 
now. But it has the serious shortcoming of not con- 
serving energy since all energy contained in the dif- 
fracted rays is additional to that of the unmodified 
incident beam. The way to get rid of this defect is 
apparent from Fig. 1 and the obvious reciprocity 
theorem. This states that if any one of the n strong 
waves is considered to be the primary wave, the same 
set of n waves will be generated. Shifting the origin 
from O to any of the points h lying on the sphere makes 
no difference to the position of T nor of the sphere; 
only the order vectors will be re-named. 

The n rays thus form an inseparable unit which we 
call the optical field; it takes the place of the single 
plane wave forming the simplest optical field in visible 
light optics. 

(iii) In the dynamical theory there are two problems 
to be solved. The first is to find the conditions under 
which an n-ray field can exist in, and travel through, 
the crystal. This is an extension of the optical 'theory 
of dispersion' to the short wavelengths of order 10 .8 can 
instead of 5.10 .5 cm in the visible range. The second 
problem is that of connecting the fields inside the crystal 
to those outside, including the incident wave; the 
answer is the 'theory of refraction and reflection'. For 
the propagation of optical fields inside the crystal, we 
may assume this to be unbounded, i.e. filling all space. 
There is no outside and no 'incident wave'. For the 
latter to appear we have to assume at least one surface 
to exist - we speak of the 'half-crystal' filling the space 
below the plane z--0, or of a crystal slab limited by 
the planes z = 0 and z--D. 

In the dynamical theory interaction between the 
scattered or diffracted rays is taken into account; apart 
from the scattering there is no interaction between the 
radiation field and the crystal. If temperature motion 
and absorption are introduced, this is done in an ad hoe 
descriptive manner, which is not very satisfactory even 
if it is capable of rendering the experimental facts. 

(iv) The theory of the future may well be the quan- 
tum theory of diffraction in which the radiation field 
and the state of the crystal are considered as parts of 
a single system. Such a theory was first formulated by 
M. Born in 1942 and it is being actively developed, in 
modern terms of Feynman diagrams by Ohtsuki (1964), 
Kuriyama (1966) and others. In quantum language the 
kinematical theory represents the simple collision of 
photon and crystal; the dynamical theory gives the 
multiple collision of photon and crystal. In both cases 
the crystal remains in its ground state. In the quan- 
tnm theory multiple scattering occurs together with 
a possible change of state of the crystal, by collision 

of the photon with a phonon or with an electron, 
leading to photoeffects or to the formation of excited 
states as a preparation for the emission of character- 
istic radiation or for Auger effects. If this theory can 
be carried through in a realistic way, it would make the 
ad hoc assumptions for the incorporation of tempera- 
ture effects, Compton effect and absorption obsolete. 

Analogy between the dynamical theory and the theory 
of small oscillations in mechanics 

Before returning to the 'dynamical '  theory let us con- 
sider a well-known theory in particle dynamics, the 
theory of small oscillations of a mechanical system 
about a position of stable equilibrium. To fix the ideas, 
consider a system of n equal pendulums coupled by a 
taut string from which they are hung at equal dis- 
tances. These pendulums are the counterparts of the 
n rays forming the optical field. In comparing the me- 
chanical and the optical problems, time dependence in 
the first corresponds to space dependence in the latter. 
Thus the problem of exciting the n-wave optical field 
in a half-crystal by a wave incident on the surface z = 0 
corresponds to finding the motion of the row of pen- 
dulums after an impact on one of them at time t =0.  
How do we find this motion for times t > 0? 

The standard method is first to study the proper 
modes of the system, namely those motions which are 
self-consistent in the sense that each part of the system 
moves without the application of external forces under 
its intrinsic forces (gravity in the case of pendulums) 
and the forces transmitted to it by being coupled to 
its neighbours. Such proper modes can only be found 
for certain frequencies of the motion, called the proper 
frequencies v(J); they are the (always real) roots of an 
equation of order n, the secular equation or equation of 
dispersion. The set of frequencies 1)(1)---1 ~(n) forms the 
'spectrum' of the mechanical system. For each proper 
frequency v(~) the amplitudes of the n pendulums, 
A~ ), A~ o. .  .A~J) stand in a fully determined ratio, and 
the motion can further be 'normalized' by making 

IA~I z = 1 ; the motion is then called a proper mode. 
h = l  

The optical analogue to this part of the solution of 
the mechanical problem is the theory of dispersion. In 
it, we find a self-consistent field of n waves, i.e. one in 
which each wave gives off as much energy to the others, 
as it receives from them via the coupling by means of 
scattering by the atoms. The amplitudes of the waves 
therefore remain constant during the progression of 
the field through the crystal. This corresponds to the 
constant amplitude simple harmonic motion of each 
pendulum in a proper mode. 

Such a state of self-consistency can not be established 
for an arbitrary tiepoint, but only for tiepoints lying 
on a surface of degree 2n, the surface of dispersion 
(SurfDisp). (The factor 2 arises because a transverse 
wave has two independent amplitude components; it 
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also holds for the pendulums if they are allowed vi- 
brations in the x and y directions.) The SurfDisp is 
thus the analogue to the 'spectrum' of the row of pen- 
dulums; to indicate that a tiepoint lies on this surface, 
we speak of a "proper tiepoint'. It represents n waves 
of well-determined amplitude ratios which form the 
self-consistent optical field or 'proper X-fieM'. Having 
determined the SurfDisp and proper X-field we know 
all there is to be known about fields inside the crystal. 

We have now to tackle the problem of starting the 
motion of the pendulums from rest by a blow given 
to the 'primary' pendulum at t = 0. This blow imparts 
a certain initial velocity to the number one pendulum, 
without directly affecting its position or the positions 
and zero velocities of the others. After the initial impact 
is over, the subsequent motion of the system can only 
consist of the superposition of its proper modes, since 
external forces are no longer acting. Optically, the cor- 
responding situation is that the external "incident' wave 
creates at the surface of the half-crystal a 'primary' wave 
of the same energy or amplitude. As this wave travels 
towards the interior (z > 0, corresponding to t > 0 for 
the pendulums) it is subjected to the coupling by radia- 
tion to the other directions and it gives off energy to 
the other n - 1  waves which start with zero amplitude 
at z=0.  Since the incident wave has been converted 
into the primary wave at the surface, it is not influ- 

I 
! 

La 

i A 

O h 
Fig.2. The Lorentz and Laue spheres about the reciprocal 

lattice points O and h; branching of the Lorentz spheres 
near the Lorentz point Lo. 

encing the optical field inside the crystal any more, so 
that the field at z > 0 can only be the superposition of 
proper X-fields. 

We have thus to superimpose (normalized) proper 
fields with such amplitudes that at z = 0  the resultant 
amplitude is E0, namely that of the incident wave, in 
the 'primary' direction, and zero in all secondary direc- 
tions. Such a condition must hold at all points of the 
crystal surface and thereby allows, in each of the n 
directions of diffraction, the combination of only such 
plane waves as keep in step with one another along 
the surface, that is, for which the scalar product u .  k(n ~ 
where u, a position vector in the surface, has the same 
value for all j. As Fig.3 shows, this is achieved by 
combining proper fields represented by tiepoints T(1), 
T(2) • • • T(TM) which lie on the same normal to the crystal 
surface as the point A representing the incident wave. 
Each tiepoint T(J) is assigned a weight W(J) by the 
above conditions, and these weighted proper tiepoints 
represent the solution of the problem of adapting the 
internal wave-field to the conditions of incidence. 

Two-ray fields within the crystal 

Let us illustrate the general procedure by a discussion 
of the most important situation, namely when there 
exists only one secondary ray. If either the primary, 
or the secondary ray were travelling alone through the 
crystal, their wave vector would have to have length 
K0, where Ko =nko=n/2o; 20 is the wavelength in free 
space and n the refractive index which for a single ray 
is given by the Lorentz formula of dispersion according 
to which the optical density is 

Ne2/m 
n 2 - 1  - ~o_co2 , (1) 

with N=number  of electrons per unit volume, eZ/m 
the ratio for electrons, coo the (circular) proper fre- 
quency of the resonator or dipole, and co=2zrv the 
circular frequency of the optical field. For X-ray fre- 
quencies co0/co is usually very small, and the optical 
density is negative and very small, so that (1) can be 
replaced by 

n -  1 = -(~z~ 2) ( N e 2 / m ) / v  2 =  ,'~ 10 -5 to 1 0  - 6  . (2) 

The introduction of K0 instead of k0 accounts for the 
general refraction in the crystal and thereby for the 
'deviations from Bragg's Law' as first observed by 
Stenstr6m in 1919. The geometrical locus for the foot 
of the wave vector of the (isolated) primary ray is thus 
a spherical surface of radius K0 with the origin as 
centre, the 'Lorentz Sphere' of ray 1 and similarly for 
the (isolated) secondary ray the Lorentz Sphere of 
radius K0 about the point h of the reciprocal lattice. 
The two spheres intersect in a circle with centre at the 
midpoint of the vector h, and near this circle lie the 
tiepoints of the 2-wave fields in which the two rays are 
coupled by mutual scattering. This coupling leads to 
a splitting of the two spheres as indicated in Fig.2" 
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the tiepoints for the simultaneous 2-ray field are bound 
to a ring-shaped surface consisting of 4 sheets of hyper- 
bolic cross section. Two of the sheets - the outer ones 
-belong to the mode where the electric force E is nor- 
mal to the plane of the two rays, and the other two to 
those modes for which E lies in that plane. Only the 
two outer sheets are shown in the figures. 

For any plane of the rays 1 and 2 there exist two 
points of reference: the Lorentz  point Lo which is at 
distance K0 from points O and h of the reciprocal lat- 
tice and is, therefore, the point where the Lorentz 
spheres intersect in that plane: and the Laue point La 
where the corresponding spheres of radius k0 intersect. 

. . . .  

The distance ]LaLo[ =(k0-K0) cos 0=k0(1 - n )  cos 0, 
where 0 is the Bragg angle; it is therefore about 10 .5 
to 10 .6 times smaller than the length of the wave vec- 
tors. Drawn to the scale adopted for showing the 
splitting of the Lorentz spheres the wave vectors should 
be about a mile long. The spheres or circles about O 
and h can therefore be replaced by their tangents at 
the Lorentz point, and these form the asymptotic 
planes or lines of the SurfDisp. Any point T on the 
surface is a proper tiepoint; the field represented by it 
is a proper mode of the optical field; the wave vectors 
of its two plane waves are fully determined by 7", and 
so is the amplitude ratio of the two waves since each 
amplitude is inversely proportional to the excess of 
the length of the wave vector over the free-space value 
k0. Thus all we can know about the proper modes of 
the 2-wave optical field in the crystal is contained in 
the SurfDisp. 

Half-crystal; two-ray internal field adapted 
to incident field 

In making the transition to the half-crystal, we have 
to distinguish two cases. In the first, the Laue case, 
the crystal surface lies on one side of both rays, i.e. 
both rays are directed towards the interior of the 
crystal. In the second case, the Bragg case, the surface 
lies between the directions of the primary ray and the 
secondary ray, so that the latter travels in the crystal 
towards its surface. 

In either case the optical field inside the crystal is a 
superposition of proper modes, such that the amplitude 
E0 incident on the crystal surface is taken over, at z-- 0, 
by the 'primary wave' and that, in the Laue case, the 
secondary wave begins with zero amplitude at the sur- 
face. In the Bragg case we cannot obtain a second 
boundary condition without introducing a lower sur- 
face of the crystal. In the simplest case this is parallel 
to the entrance surface, so that the crystal is a slab 
of thickness D. The condition is then that the secondary 
ray start with zero amplitude at the lower surface [of. 
Fig. (4b)]. 

Since these conditions have to hold at any point of 
the surface, the waves in direction 1 have to remain 
in step with the incident wave along the whole surface, 

and the waves in direction 2 also have to have a com- 
mon trace along the surface (the upper one in the Laue 
case, the lower one in the Bragg case). The wave vector 
of the trace is the resolved part of the spatial wave 
vector along the surface. The existence of such surface 
conditions therefore leads to a unique selection of tie- 
points T(1)T (4) which may be combined, namely those 
lying on the same normal to the surface as the point 
A representing the incident wave (A='Anregungs- 

- - . _ . _ _ ~  

punkt'). For with this choice, the wave vectors AO 

T(1)OT(2)O all have the same resolved parts along the 

surface, and T(1)h, TC2)h stand in a similar relation; 
besides the same holds for the other case of polariza- 
tion for which the hyperbola is not shown in Fig. 3. 

The point A in Fig.3 corresponds to incidence on 
the reflecting planes under an angle 0 smaller than the 
Bragg angle 0B since 0B would be the angle of incidence 
if A coincided with La. We have 

IAO I = I0 - 081 = IALal/ko . 

As A moves on the Laue circle, the distance T(1)T (2) 
varies. It has its smallest value, namely the vertex dis- 

"" - -.Q La T (I) 

(2) n -  ~ 

0 h 
Fig. 3. The SurfDisp for two rays; selection of proper tiepoints 

for a half-crystal cut off with surface normal n. 

(a) (b) (c) 
Fig.4. Wave-fields in the crystal slab, (a) Pendell6sung in the 

Laue case, (b) Pendeli6sung in the Bragg case, (c) primary 
extinction and total reflection in the Bragg case. 
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tance of the hyperbola, when rays 1 and 2 are equally in- 
clined to the reflecting surfaces and A coincides with La. 
This minimum distance is Koln2- 11 l~hl/cos0 where an, 
the 'coupling coefficient' of the two rays, is the Fourier 
coefficient of order h in the development of the distri- 
bution of the polarizability, or scattering power, or 
electron density, in the crystal cell divided by the total 
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Fig. 5. Bragg case; regions of Pendell6sung and of total reflec- 
tion (TR) for symmetrical Bragg case. 
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Fig. 6. (a) Bragg case; dependence of width of region of total 
reflection and of deviation from Bragg's law on the inclina- 
tion of the crystal surface. (b) Experimental reflection curves 
showing this dependence (Bubakova, R., Czech. J. Phys. 
1962 B 12, 776). 

polarizability. This was loosely called the structure 
factor in the kinematical theory, and we see that the 
vertex distance is proportional to its first power. The 
value given above holds when the electric field vector 
of the waves is normal to the plane of rays 1 and 2 
( 'a  polarization'); in that case the coupling is stronger 
than for 'n polarization' when each ray is affected only 
by the component of the E field of the other ray nor- 
mal to it. Icon[ is then to be replaced by I~nl cos 20 
where 20 is the angle between rays 1 and 2. 

The superposition of the proper modes produces two 

plane waves in direction 1 with vectors T(1)O and T(2)() 
and two plane waves in direction 2 with wave vectors 

T ( %  and T(Z)h. The difference between the vectors of 
) 

each pair is given by the vector TO)T(2) and is very 
small compared to the lengths of the wave vectors 
themselves. Thus in each direction we obtain beats, 

and, since TO)T(~) is normal to the crystal surface, 
these beats are of constant amplitude in planes parallel 
to the surface. It is by means of these spatial beats that 
the flux of energy is transferred from direction 1 to 
direction 2 and vice versa, in the same manner that 
energy oscillates from one to the other of coupled equal 
or nearly equal pendulums. This type of solution was 
therefore called originally "PendellSsung', and this name 
has been accepted internationally. The full analogy 
however, of the procedure of the dynamical theory to 
that of the general theory of small oscillations in me- 
chanics was not recognized until recently and is pub- 
lished here for the first time. In the hands of N. Kato 
and others, the fringes obtained by the Pendel- 
1/Ssung type of optical field near the exit surface of a 
slightly wedge-shaped crystal slab have been used for 
precise determination of structure factors IFhl - a 
method understandable in the light of the above re- 
marks on the smallest TO)T (2~ distance which leads 
to the longest beats. 

The Pendell6sung type of solution is illustrated in 
Figs. 4(a) and (b) for the symmetrical Laue and Bragg 
cases. The amplitudes of the fields in directions 1 and 
2 are indicated by the thickness of the rays. Energy, 
of course, is conserved; though the direction of the 
energy flux varies with depth, the integrated flux com- 
ponent parallel to z is the same everywhere - provided 
of course that absorption is absent. 

Whereas in the Laue case the proper tiepoints To) 
and T (2) lie on different branches of the hyperbola, 
they are on the same branch in the Bragg case. As the 
point of excitation moves from A in Fig. 5 towards 
greater glancing angles 0, To) and T (2) approach one 
another and the length of the Pendell6sung beats in- 
creases, without, however, there occurring any funda- 
mental change in the type of solution until T (1) and 
T(2) coincide. The first beat then changes, for direction 
1, into a linear decrease and for direction 2, into a 

A C 2 5 A  8 
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linear increase, with increasing depth - cf. the be- 
haviour of a pendulum starting its oscillations at time 
t = 0 under the influence of a periodic force having as 
frequency the proper frequency of the pendulum. 

As A moves upwards into the region defined by the 
tangents to the hyperbola parallel to the surface nor- 
mal n, the intersections with the SurfDisp become 
complex, indicating that the wave vectors have a real 
and an imaginary part. The latter produces an expo- 
nential increase or decay of the field, as it proceeds 
in the crystal, of the form exp (+ lcz) which leads to 
Darwin's 'primary extinction', whereas the real part 
corresponds to a straight displacement of the tiepoint 
from one tangent point to the other. For points A 
between the two tangents all of the energy flux of the 
incident wave must emerge again as the 'reflected' wave 
2 from a sufficiently thick non-absorbing crystal, since 
the primary extinction weakens the field to zero am- 
plitude at the lower boundary of a crystal slab [Fig. 4(c)]. 
The region between the tangents is therefore the 'region 
of  total reflection' TR. As Fig. 6(a) shows, its centre is 
displaced from the Bragg angle which is the angle of 
incidence when A coincides with La. 

The displacement as well as the width of TR depend 
on the direction of the crystal surface. Measured in O, 
they are largest when incidence on the surface of the 
crystal is nearly glancing, and the reflected ray leaves 
the surface at a steep angle [Fig.6(a)]. This effect is 
well shown in the reflection curves published by Buba- 
kova (1962) [Fig. 6(b)]. It was first observed by Bergen 
Davis & Terrill (1922) and yon Nardroff (1924) in 
their 'rocking curves' and has been used in reverse for 
converting a wide incident beam into a narrow mono- 
chromatized reflected beam [e.g. Renninger (1961)]. 

The reflection curves in Fig.6(b) also show the 
rounding-off of the curve produced by the variation 
of the width of the region of total reflection for the 
a and the n polarizations and the asymmetry of the 
curve owing to absorption. 

The dynamical theory was formulated in its essential 
parts in 1917, but it lay dormant for some thirty years 
with only a few applications. It came into prominence 
when the art of growing perfect or near-perfect crys- 
tals was developed, and when the discussion of electron 
diffraction and electron microscope pictures demanded 
some such theory because of the much stronger inter- 

action of matter with electrons than with X-rays. The 
discovery of the Borrmann effect in 1941 and of its 
use as a means for the study of dislocations and other 
imperfections in crystals heightened the interest in the 
theory. In 1930 the theory was re-cast in a slightly dif- 
ferent form by M.v. Laue and it has been used in that 
form by most workers. The presentation given above 
reverts more closely to the form and the ideas of the 
original publication. 
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